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Use of Multi-attribute Utility Functions in Evaluating 
Security Systems 

 

Carol Meyers, Alan Lamont, and Alan Sicherman  

Lawrence Livermore National Laboratory 

 

Introduction  
In analyzing security systems, we are concerned with protecting a building or facility from an 

attack by an adversary.  Typically, we address the possibility that an adversary could enter a 

building and cause damage resulting in an immediate loss of life, or at least substantial disruption 

in the operations of the facility.  In response to this setting, we implement security systems 

including devices, procedures, and facility upgrades designed to a) prevent the adversary from 

entering, b) detect and neutralize him if he does enter, and c) harden the facility to minimize 

damage if an attack is carried out successfully.  Although we have cast this in terms of physical 

protection of a building, the same general approach can be applied to non-physical attacks such 

as cyber attacks on a computer system.   

 A rigorous analytic process is valuable for quantitatively evaluating an existing system, 

identifying its weaknesses, and proposing useful upgrades.  As such, in this paper we describe an 

approach to assess the degree of overall protection provided by security measures.  Our approach 

evaluates the effectiveness of the individual components of the system, describes how the 

components work together, and finally assesses the degree of overall protection achieved.  This 

model can then be used to quantify the amount of protection provided by existing security 

measures, as well as to address proposed upgrades to the system and help identify a robust and 

cost effective set of improvements.  Within the model, we use multiattribute utility functions to 

perform the overall evaluations of the system. 

Background to the Analytic Problem 
In evaluating a security system, certain sets of security measures must work together.  Generally, 

different security system components can either complement or compensate each other.  In the 

complementary case, two or more security measures must work together to provide an effective 

security function.  For example, to prevent an adversary from entering a facility, there must be 

barriers around the facility (such as fences or walls) that make it difficult to enter the facility 

except through authorized entry points.  In addition, there must also be effective authorization 

checks at those entry points to ensure that an unauthorized person cannot simply walk in.  These 

measures complement each other and have the form of an AND condition in a fault tree analysis.  

Other measures compensate for each other and instead have the form of an OR condition; for 

example, an adversary within the building might be detected by an electronic sensor, OR he 

might be detected by an alert employee.  Combining over both scenarios, this leads to a fault tree 

structure for the evaluation function: a series of AND and OR conditions that measure the overall 

possibility of preventing or mitigating the damage caused by an adversary. 
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 The standard fault tree model is a probabilistic model in which the AND and OR 

conditions are hard conditions: a condition completely fails or succeeds depending on whether or 

not the corresponding sub-conditions fail or succeed.  The multiattribute utility framework can be 

used as a generalization for a fault tree analysis.  It can be calibrated to provide either hard AND 

and OR conditions or soft AND and OR conditions, such that there may be partial success or 

failure for a set of conditions.  The ability to model soft conditions is especially useful when the 

data are too subtle, complex, or difficult to obtain for a full probabilistic analysis.  In its extreme, 

the multiattribute utility model can reduce to a fault tree, but it is also sufficiently general to 

avoid the limitations of such analyses.   

As an illustration of this situation, suppose two components work together as an AND 

condition.  In a fault tree analysis with hard conditions, the failure of one component would 

mean the failure of the entire function.  With soft conditions, the failure (or absence) of one 

component might severely degrade, but not eliminate, the overall effectiveness.  In a preceding 

example, it was pointed out that external barriers should be used with authorization checks at the 

entrance points in order to have effective access control; however, if there were very weak 

authorization checks, the function would not be entirely impaired.  Casual authorization checks 

coupled with strong external barriers are considerably better than no access controls at all. 

Multiattribute utility theory can capture this preference, while a strict probabilistic method 

cannot.  

In what follows, we begin by outlining the general multiplicative form of a multiattribute 

utility function.  We discuss when such forms are useful and how they are represented 

algebraically.  We also show how multiplicative forms can be used to model both compensatory 

and complementary interactions, and how they may be calibrated to represent both hard and soft 

AND and OR conditions.  For each interaction, we discuss the full and weak archetypal 

representations that are used in practice, as well as the asymptotic utility behavior associated 

with each representation.  We then introduce the additive form of the utility function, which is a 

special case that is intermediate between the AND and OR cases.  We discuss the algebraic 

representation of such forms and when they may be appropriate in practice.   

We next represent the spectrum of multiplicative forms in terms of the range of a 

particular parameter.  We discuss techniques for eliciting such parameters and calibrating utility 

functions in general.  We conclude by addressing renormalization techniques that can be useful 

in the elicitation of strongly complementary interactions.  Throughout the paper, our focus is on 

calibration techniques of the „quick and dirty‟ variety, which avoid the strain on time and 

resources associated with a full utility calibration while retaining much of the rigor and 

formalism.  

 This paper is intended as a supplement to a standard treatment of multiattribute utility 

theory, as can be found in Keeney and Raiffa [1].  The theory and functions in this paper have 

been developed over years of practical research at Lawrence Livermore National Laboratory and 

other institutions. 

Multiattribute Utility Functions for Security Systems 
Utility functions are used to evaluate the desirability of a set of conditions, and to compare the 

desirability of one set of conditions to another.  This can be straightforward when there is a 

single overall consideration, such as the total cost of a project; however, in other cases the 
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evaluation may involve several issues at once.  For instance, we might be concerned with both 

the cost of a project and the total time to completion.  In this case, there is a tradeoff:  a decision 

maker might prefer a somewhat higher cost in order to have a shorter completion time.  

Multiattribute utility has been developed to provide a formal structure for preferences that can 

include more than one condition (or attribute) at once.  

 The core of multiattribute utility theory is the use of a pragmatic aggregation function for 

combining the single-utility functions from each of the system components.  The general 

expression of this aggregation is a multiplicative form.  Such forms allow for an interaction or 

synergy between the components under consideration, just as we desire in the evaluation of 

security systems.  We now present the algebraic representation of the multiplicative form, 

followed by a discussion of how such forms can be used to represent compensatory and 

complementary interactions between components.  The additive form, a special case in which 

each of the components is treated separately, is discussed later.  

Algebraic Representation 

In assessing a system, we break the security systems in the facility down into basic components 

and address the conditions of the individual components.  Such components can include items 

such as electronic sensors, the training and placement of personnel, the ability to respond to 

alarms, and the strength of barriers.  Each component i is given a score, denoted xi.  The present 

discussion does not focus on how this is achieved (for further information, see Keeney and 

Raiffa [1]).  The score xi is based on objective, observable conditions (such as how many people 

are in an area, how frequently sensors are tested and maintained, and how long it would take an 

adversary to break a lock).  This score does not necessarily directly reflect the effectiveness of 

that component.  Each score is then translated into a rating of the component using the 

corresponding single attribute utility function, Ui(xi).  The determination of these single attribute 

utility functions is part of the overall assessment process. 

 Using these single attribute functions, the multi-attribute utility function is of the form:  

 

  

Here, 

Ui(xi) = the single-attribute utility value for attribute i with score xi (ranges from 0 to 1), 

 ki = a parameter from the tradeoff for component i (which we address later), for all i, and 

 K = a normalization constant, ensuring that the utility values are scaled over the 

component range space between 0 and 1. 

 A useful representation of the function is obtained by setting ci = Kki for all i, which leads 

to the following form: 
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In this, we are also using the fact that the parameter 1]1[
i icK , which we obtain by 

observing that the greatest value the numerator can achieve is exactly equal to 1]1[
i ic .    

Scaling by this factor of K ensures that the overall utility function is between 0 and 1. 

 We can illustrate the behavior of the utility function using a simple case of two variables.  

In this situation, the utility function can be simplified as:  

 

.  

 

Using the fact that ci = Kki, this can be rewritten as: 
 

. 

 

We can address some of the basic characteristics of the utility function by examining this 

last equation. The first two terms of the expression provide a linear interaction between the 

overall utility and the single-attribute utility functions.  The last term is a multiplicative 

interaction term. The settings of the kis and K determine how these linear and multiplicative 

terms interact.  In general, the value of K can be negative, positive, or approach 0 (a singularity 

in the multiplicative equation occurs if K is exactly equal to 0).  In addition, the sum of the kis 

can be less than, equal to, or greater than 1.  The values of K and the kis are not independent.  In 

the case where each of the component utilities is at their maximum value of 1, the overall utility 

is 1, giving the relation:  

 

.  

 

From this relation, and the fact that the kis are positive, we can deduce that if K equals 0, the sum 

of the kis = 1; if K is negative, the sum of the kis > 1; and if K is positive, the sum of the kis < 1. 

Varieties of Interactions 

As the value of K ranges from negative, to 0, to positive, the overall utility function can reflect 

three different types of interactions between individual components.   We outline each of these. 

 

 In the compensatory case, performance of one component can make up for the lack of 

performance by other components.  In the extreme, the decision maker might think, “If 

just one of these components is at its best level, then I‟m set.”   

 In the complementary case, a good performance by one component is less important than 

balanced performance across the components.  In the extreme, the decision maker might 

think, “If just one of these components is at its worst level, then the whole system is kind 

of bad.”  

 In the additive case the performance of one component does not interact with the value of 

the other components. 
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 In what follows, we illustrate cases where the components all have equal ci values.  This 

assumption is not true in general, but can be reasonable in many applications since attribute 

ranges can often be scaled to achieve similar weights (see [1] for details). 

Compensatory Case 

We now discuss the structure of compensatory interactions, both qualitatively and 

algebraically. In the two-component case, a compensatory relationship means that a high utility 

on one component can partially compensate for a low utility on the other. Figure 1 illustrates a 

strongly compensatory case. If we examine the upper left corner of the graph, where x1=0 and 

x2=1, we see that the utility is slightly greater than 0.9, in spite of the fact that x1 is at its lowest 

level.  Thus, the fact that x2 is at a high level almost completely compensates for the fact that x1 is 

at its lowest level.  We also note that because the iso-utility curves are concave, the overall utility 

improves slowly as x1 is improved from 0. 
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Figure 1:  Iso-utility curves for compensatory case.  The parameters c1 and c2 have 
been set equal to a value of -0.9, which makes this a strongly compensatory case. 

Strong Compensatory Case 

The strong compensatory case can be thought of as a strong OR, where the overall utility 

evaluates to 1 if any of the components‟ utility functions evaluate to 1.   

Algebraically, this interaction is obtained when ci = -1 for all components i.  This 

corresponds to a utility function of the type: 

 

Compensatory, c1 = c2 = -0.9 

U2(x2) 

U1(x1) 
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Note that if any of the utility functions Ui(xi) = 1, then the entire utility function evaluates to 1.  

This implies that a single component at its best level causes the entire utility function to be at its 

best level.   

Weak Compensatory Case 

In many applications, the assumptions of the full compensatory case are too restrictive.  The 

weak compensatory case represents a more moderate version of the compensatory case.  In this 

case, the best performance of a single component partially compensates for poor performance by 

the other components.  This can be thought of as a weak OR, where the overall utility achieves at 

least a certain intermediate value if any of the single-variable utility functions evaluate to 1. 

 Algebraically, such an interaction is obtained when -1 < ci < 0 for all i.  This corresponds 

to utility functions of the type:  

 

.
11

 )](1[1
),...,,( 21 n

i

i iii

n
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 The Archetypal Weak Compensatory case is obtained when ci = -.5 for all components i.  

Asymptotically, if one component‟s utility function evaluates to 1 and all other components‟ 

utility functions evaluate to zero, the overall utility is equal to .5 as the number of components 

goes to infinity.  This is less extreme than the full compensatory case, where the overall utility 

would be equal to 1.  Algebraically:  

 

. as       5.

)5.1(1

)1)(5.1(1
)...,,(

1

21

n
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n

n

n

 

This archetypal case can be appropriate in situations where there is a compensatory interaction 

between the components, but the strong compensatory case is deemed too extreme. 

 Other weak compensatory variants can be obtained by modifying the value of ci that is 

chosen.  For the values -1 < ci < -.5, we can obtain a „stronger‟ compensatory interaction.  

Similarly, for the values -.5 < ci < 0, we can obtain a „weaker‟ compensatory interaction.  Which 

variety is appropriate for the problem in consideration is determined via elicitation and discourse 

with the decision-maker.   

In general, given a value of ci between -1 and 0, the asymptotic behavior of a weak 

compensatory utility function on the solution (1,0,…0) tends to:  
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This formula can be used to choose other values of ci that result in „stronger‟ and „weaker‟ 

compensatory interactions, as appropriate.  Graphically, the choice of ci affects the minimum 

utility that can be obtained in this case as follows: 

 

 

0 -1 

Ui 

  ci 

1 

 

Figure 2: Minimum Utility Guaranteed as a Function of ci Value.  

This graph can also help analyze the sensitivity of the observed results and how they depend on 

the chosen ci value. 

 

Complementary Case 

Two components have a complementary relationship when they reinforce each other, or 

when both are needed to perform a function.   

Figure 3 illustrates a strong complementary interaction.  Examining the upper left corner 

at x1=0 and x2=1, we see the utility is quite low at about 0.14, even though one of the 

components is at full value.  In  complementary cases such as this, the iso-utility curves are 

convex.  Consequently, as x1 is improved from 0, the utility improves rapidly. 
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Figure 3: Iso-utility curves for complementary case. The parameters c1and c2 have been 
set equal to a value of 5, which makes this a strongly complementary case. 

Analogous to the compensatory case, there are two main varieties of complementary 

interactions: the strong complementary case and the weak complementary case.   

Strong Complementary Case 

In a strong complementary case, the worst performance by one component entirely cancels out 

the performance of the other components.  This can be thought of as a strong AND, where the 

overall utility evaluates to 0 if any of the components‟ utility functions evaluate to 0. 

Algebraically, this kind of interaction is obtained when ci = ∞ for all components i.  This 

corresponds to a utility function of the type:  

).()...()(),...,,( 221121 nnn xUxUxUxxxU  

Note that if any component utility function Ui(xi) = 0, then the entire utility function evaluates to 

0.  This implies that a single component at its worst level causes the entire utility function to be 

at its worst level.  Thus the performance of a single component is less important than balanced 

performance across different components. 

Weak Complementary Case 

Occasionally the assumptions of the full complementary case can be too extreme.  In certain 

situations, as described in the introduction, it is desirable to have at least a partial sense of 

progress as individual component utility values are improved.  For such situations, the weak 

complementary case represents a more moderate version of the complementary case.  In this 
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instance, a single component at its worst level partially cancels out the performance of the other 

components.  This can be thought of as a weak AND, where the overall utility achieves at most a 

certain intermediate value if any of the components‟ utility functions evaluate to 0. 

 Algebraically, such an interaction is obtained when 0 < ci < ∞ for all i.  This corresponds 

to utility functions of the type:  

.
11

 1)](1[
),...,,( 21 n

i

i iii

n
c

xUc
xxxU  

 

The Archetypal Weak Complementary case is obtained when ci = 1 for all components i.  

Asymptotically, if one component‟s utility function evaluates to 0 and all other components‟ 

utility functions evaluate to 1, the overall utility is equal to .5 as the number of components goes 

to infinity.  This is less extreme than the full complementary case, where the overall utility would 

be equal to 0.  Algebraically:  
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1

21
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This archetypal case is used when there is a complementary interaction between the components, 

but the strong complementary case is deemed too severe. 

 Similar to the compensatory case, weak complementary variants can be obtained by 

modifying the value of ci that is chosen.  For the values 0 < ci < 1, we can obtain a „weaker‟ 

complementary interaction.  Similarly, for the values 1 < ci < ∞, we can obtain a „stronger‟ 

complementary interaction.  Which variety is appropriate is determined via elicitation with the 

decision-maker.   

In general, given a value of ci between 0 and ∞, the asymptotic behavior of a weak 

complementary utility function on the solution (0,1,…,1) tends to: 

 

. as     
1

1

         
1)1(

1)1(
)...,,(

1

21

n
c

c

c
xxxU

i

n

i

n

i
n

 

This formula can be used to choose other values of ci that result in „stronger‟ and „weaker‟ 

complementary interactions, as appropriate.  Graphically, the choice of ci affects the maximum 

utility that can be obtained as demonstrated in Figure 4.  Again this graph can be used to help 

analyze the sensitivity of the results and dependence on the ci value. 
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Figure 4: Maximum Utility Obtainable as a Function of ci Value. 

Additive Case 

The additive case is a special case where there is no interaction between the components.  Here, 

the total utility is simply the weighted sum of the utilities of the individual components.  Figure 5 

shows the iso-utility curves for an additive case.  In this example, the kis are equal and sum to 1.  

Examining the upper left corner, at x1 = 0 and x2 = 1 we see that the overall utility is 0.5.  This 

reflects that we only get credit for x2, and there is no penalty for the fact that x1 = 0. Note that the 

utility is 0.5 in this case because the kis are equal.  More generally, in the additive case the utility 

of the corner will depend on the ratio of the kis.  

 

Figure 5:  Additive case. The parameters c1 and c2 approach a value of 0.0. 
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Additive forms are appropriate for systems in which the components to be evaluated exhibit little 

interaction with each other.  Heuristically, the overall utility of a system can be expressed as the 

sum of its parts.  If the utility of one such component evaluates to zero, then the full utility value 

cannot be achieved, but at the same time it does not diminish the contributions of the other 

components.  The additive form is also used in situations where the ranges of component 

performance (best level to worst level) are not too broad or extreme.  In such cases, the 

limitations of the additive form are not as pronounced as when components can evaluate to 

greatly different levels, and the simpler additive form may be preferred. 

The additive form is a special case of the general multi-attribute utility function.  The 

general function approaches the additive form as the value of the cis (and hence, also the value 

of K) approach 0.  The basic utility function for an additive form is as follows: 

 

)(...)()(),...,,( 22211121 nnnn xUkxUkxUkxxxU  

 

where k1, k2,…, kn are nonnegative constants such that .1...21 nkkk     

This form is known as additive because the ki terms represent a relative weighting of the various 

components, and the overall utility is obtained by taking a weighted sum of the individual utility 

functions. 

Summary of Cases  
In the previous sections, we observed how the values of ci, ki, and K chosen for a multiplicative 

form can influence the behavior of the form both qualitatively and algebraically.  The following 

table summarizes the relationships between these three values, and what kind of interaction each 

combination represents. 

 

Value of K Sum of the kis Value of cis 
Type of 

Interaction 

Negative >1.0 Negative compensatory 

Approaches 

zero 
1.0 

Approaches 

zero 
additive 

Positive <1.0 Positive complementary 

 

Table 1:  Relationships between the values of ci, ki, and K, and the type of interaction 
represented. 

 

This table can be used to understand the interplay between these three quantities and how such 

algebraic parameters can be used to represent different relationships between components of a 

system. 
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 Further illustrating this phenomenon, Figure 6 addresses the ranges of possible ci values 

and how each of these translates into compensatory, complementary, or additive cases.  The full 

and weak versions of each case are detailed, as well as the archetypal representative of each case. 

 

  

   

 

 

 

 

 

 

 

Figure 6:  Spectrum of values for ci and the resulting interactions between components. 

 

Note that as the value of ci approaches zero, the interaction terms represent less weight in the 

utility function.   Hence in the limit, the multiplicative form approaches an additive form.  

 Figure 7 shows the impact of the ci values on the utility value at the corner point of the 

utility function where x1 = 0 and x2=1.  When the cis approach -1, the value at the corner point 

approaches 1.  In this case, the fact that x2 is at its highest level completely compensates for the 

fact that x1 is at its lowest level.  This case corresponds to the hard OR in a fault tree analysis.  At 

the other extreme, as the cis go to infinity, the utility at the corner point approaches 0 (the graph 

is truncated here at ci = 3.5).  This corresponds to the hard AND where both components must 

perform well to achieve functionality.  As the cis approach 0, the function becomes additive and 

the utility value of the corner point goes to 0.5, indicating the two attributes have no interaction.  

 

 

   Weak Compensatory Cases      Weak Complementary Cases 
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Utility at corner point (0, 1) as a function of c parameter, 

assuming c1 = c2 = c
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Figure 7: Utility at the corner point (0,1) as a function of the c parameter, assuming  the 
ci’s are equal. 

Calibrating the Function 
We now address approaches for eliciting the values of ci for the forms that we have discussed.  

Our goal is to provide both intuition for how the forms are structured and an exposition of a 

simple case. 

The calibration procedure consists of two main components: first, we determine the type 

of interaction (complementary, compensatory, or additive) evidenced by the attributes under 

question, and next, we assess the strength (strong or weak) of that interaction.  In what follows, 

we assume for the sake of exposition (as in the rest of the document) that all attributes are 

equally weighted.  As before, this assumption is usually reasonable in practice, because attribute 

ranges can often be scaled to achieve similar weights. 

Determining the Type of Interaction 

One way to determine the kind of interaction between two attributes is as follows.  Suppose that 

{x1, x2} represents the state of the attributes in a given situation, and (U1(x1), U2(x2)) represents 

their corresponding utilities.  We then consider tradeoffs of the form in Figure 8: 

 



  14

     Lottery 1.        Lottery 2. 

 

             .5  (1, 0)       (1, 1) 

 

             .5       (0, 1)       (0, 0) 

 

Figure 8:  Lotteries used to determine the kind of interaction between attributes. 

In Lottery 1, there is a 50% chance of attribute 1 being at its highest level and attribute 2 at its 

lowest, and a 50% chance of attribute 1 being at its lowest level and attribute 2 at its highest.  In 

Lottery 2, there is a 50% chance of both attributes being at their highest levels, and a 50% chance 

of both being at their lowest levels.  

If the decision maker prefers Lottery 1 to Lottery 2, then we infer that that the interaction 

is compensatory.  Here, having one attribute at its best level can make up for a low level on the 

other attribute.  Conversely, if the decision maker prefers Lottery 2 to Lottery 1, we conclude the 

interaction is complementary.  This is because having either attribute at its lowest level is nearly 

as painful as having both attributes at their lowest levels.  Finally, if the decision maker views 

the lotteries as equally preferable, we say the attributes are additive.  In this situation, there is 

little interaction between the attributes and both alternatives are equally appealing. 

Determining the Strength of the Interaction 

We now address how to determine the strength of the interaction, for attributes exhibiting 

complementary or compensatory relationships.  (For attributes in the additive case, this factor 

does not apply.) 

To assess the strength of a compensatory relationship, the decision maker should 

compare the solution (1, 0) to the solution (1, 1).  If both of these alternatives are nearly equally 

preferable, then the attributes exhibit a strong compensatory relationship.  Thus, a strong 

compensatory form (ci approaches -1) should be used.  If instead (1, 1) is preferred to (1, 0) 

(which in turn is preferred to (.5, .5), as implied by the tradeoff in the previous section), then the 

attributes display a weak compensatory relationship.  For most purposes, it is then sufficient to 

use the archetypal weak compensatory form (ci = -.5).  (If a „stronger‟ or „weaker‟ weak 

compensatory form is desired, equations of the type found at the end of the section on 

compensatory forms can help determine an appropriate value for the ci parameters.) 

To determine the strength of a complementary relationship, the solution (1, 0) should be 

compared to the solution (0, 0).  If both of these alternatives are preferred equally by the decision 

maker, then the attributes exhibit a strong complementary relationship.  Hence a strong 

complementary form (ci approaches ∞, although a value of, say, 5 or greater does represent a 

strongly complementary relationship) should be used.  If (1, 0) is preferred to (0, 0) (which are 

both preferred less than (.5, .5), as implied by the tradeoff in the previous section), then the 

attributes have a weak complementary relationship.  In most situations, we may then use the 

archetypal weak complementary form (ci = 1).  (If a „stronger‟ or „weaker‟ weak complementary 

.5 

.5 
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form is desired, equations such as those found at the end of the section on complementary forms 

can help determine an appropriate value for the ci parameters.) 

Determining the Ratio of the cis When They Are Not Equal 

Compensatory Case 

When the cis are not equal, without loss of generality we can assume that the solution (1, 0) is 

preferred to the solution (0, 1).  If we can determine that the solution (u1, 0) is equally preferred 

to (0, 1), then we can set the ratio as: 

.1

1

2 u
c

c
 

To determine the values of the cis, we start by assigning the ci term with the largest absolute 

value in the group of attributes being aggregated to the archetypal value (e.g., -.5 for the weak 

case).  We then use the ratios to determine the values of the other ci terms. 

Normalization Issues 
Extremely complementary cases can occasionally be difficult to elicit, because they require the 

decision maker to perform assessments where one component is always at its worst level.  Often 

times decision makers can be uncomfortable relating to components at their worst levels, and as 

such they may find it hard to make meaningful comparisons. 

A method of dealing with this situation is to renormalize the ci values, in such a way that 

all complementary cases can be assessed using components at their best levels.  We briefly 

describe one such renormalization that has the utilities going from -1 to 0 instead of 0 to 1: that 

is, ui′ = ui – 1. 

 In the renormalization, ci values are converted into a new parameter ci′ as follows: 

i

i
i

c

c
c

1
 

In this new ci
’
 universe, the ranges for compensatory and complementary interactions have 

changed.  Specifically, 

 

 Compensatory interactions correspond to a range of -∞ < ci
′ 
< 0, and 

 Complementary interactions correspond to a range of 0 < ci
′ 
≤ 1. 

 

Now to obtain an appropriate cancellation of terms, one component in the compensatory case 

must always be at its best level.  This can make elicitations a lot easier to perform 

 The renormalization also alters the ranges of full and weak cases as follows.  (Note that 

in practice, the ci
′ 
term is never set exactly equal to 1 in the full complementary case, as it causes 

a singularity in the transformation between ci and ci
′ 
values.  A value of .9999 would suffice.) 
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 The Full compensatory case corresponds to ci
′ 
= -∞. 

 Weak compensatory cases correspond to -∞ < ci
′ 
< 0. 

 The Archetypal weak compensatory case corresponds to ci
′ 
= -1. 

 The Full complementary case corresponds to ci
′ 
= 1. 

 Weak complementary cases correspond to 0< ci
′ 
< 1. 

 The Archetypal weak compensatory case corresponds to ci
′ 
= .5. 

Determining the Ratio of the ci′s When They Are Not Equal 
Complementary Case 

When the ci
′
s are not equal, without loss of generality we can assume that the solution (0, -1) is 

preferred to the solution (-1, 0).  If we can determine that the solution (u1′, 0) is equally preferred 

to (0, -1), then we can set the ratio as: 

.1

1

2 u
c

c
 

To determine the values of the ci′s, we assign the ci′ term with the largest absolute value in the 

group of attributes being aggregated to the archetypal value (e.g., .5 for the weak case).  We then 

use the ratios to determine the values of the other ci′ terms.  Finally, we can use the relation  

i

i
i

c

c
c

1
 

to translate the ci′ terms back to ci terms. 

Concluding Remarks 
This paper has covered the structure and function of multiattribute utility functions applied to the 

evaluation of security systems.  In particular, we have addressed the compensatory, 

complementary, and additive variants of such forms, which as far as we know have never 

previously been treated with this particular level of technical detail. 

 We have provided a picture of how changing parameter values affect the interpretation of 

the aggregation being performed, and how decision maker beliefs may be used to identify the 

best choice of a multiplicative form.  We have also addressed how such parameters may be 

obtained through the elicitation of experts, as well as when renormalizations of the parameter 

space may aid in certain varieties of elicitations.  Our hope is to provide a solid theoretical basis 

for future practitioners of multiattribute utility theory in the area of security systems evaluation. 
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